A formula for angular and hyperangular integration

John Avery
H.C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Received 23 April 1998

Abstract

A formula is derived which allows angular or hyperangular integration to be performed on any function of the coordinates of a d-dimensional space, provided that it is possible to expand the function as a polynomial in the coordinates $x_{1}, x_{2}, \ldots, x_{d}$. The expansion need not be carried out for the formula to be applied.

1. Introduction

Since quantum chemists and physicists frequently need to perform angular integrations when calculating matrix elements, formulae for evaluating angular integrals have very general interest and utility. A number of such formulae have been discussed by the author and coworkers in previous publications [3-6,9]. In the present note, a new angular integration formula is derived, which is more general than those previously discussed.

2. Hyperangular integration in d-dimensional spaces

Let

$$
\begin{equation*}
\mathbf{x}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right\} \tag{1}
\end{equation*}
$$

be the Cartesian coordinates of a d-dimensional space, and let

$$
\begin{equation*}
r=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

be the hyperradius in this space, while

$$
\begin{equation*}
\Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}} \tag{3}
\end{equation*}
$$

is the generalized Laplacian operator. The volume element in the space can be expressed in the form [3,4]

$$
\begin{equation*}
\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{d}=r^{d-1} \mathrm{~d} r \mathrm{~d} \Omega \tag{4}
\end{equation*}
$$

[^0]where $\mathrm{d} \Omega$ is the generalized solid angle element. The total solid angle in such a space can be found by noticing that
\[

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} r r^{d-1} \mathrm{e}^{-r^{2}} \int \mathrm{~d} \Omega=\prod_{j=1}^{d} \int_{-\infty}^{\infty} \mathrm{d} x_{j} \mathrm{e}^{-x_{j}^{2}}=\pi^{d / 2} \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} r r^{d-1} \mathrm{e}^{-r^{2}}=\frac{1}{2} \Gamma\left(\frac{d}{2}\right) \tag{6}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\int \mathrm{d} \Omega=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{7}
\end{equation*}
$$

For example, when $d=3$, this reduces to

$$
\begin{equation*}
\int \mathrm{d} \Omega=\frac{2 \pi^{3 / 2}}{\Gamma(3 / 2)}=4 \pi \tag{8}
\end{equation*}
$$

while when $d=4$, we have

$$
\begin{equation*}
\int \mathrm{d} \Omega=\frac{2 \pi^{4 / 2}}{\Gamma(4 / 2)}=2 \pi^{2} \tag{9}
\end{equation*}
$$

The angular integration formula which will be derived in this paper states that, if $F(\mathbf{x})$ is any function which can be expanded about the origin in terms of a polynomial in $x_{1}, x_{2}, x_{3}, \ldots, x_{d}$, then

$$
\begin{equation*}
\int \mathrm{d} \Omega F(\mathbf{x})=\frac{(d-2)!!2 \pi^{d / 2}}{\Gamma(d / 2)} \sum_{\nu=0}^{\infty} \frac{r^{2 \nu}}{(2 \nu)!!(d+2 \nu-2)!!}\left[\Delta^{\nu} F(\mathbf{x})\right]_{\mathbf{x}=0} \tag{10}
\end{equation*}
$$

When $d=3$, this formula reduces to

$$
\begin{equation*}
\int \mathrm{d} \Omega F(\mathbf{x})=4 \pi \sum_{\nu=0}^{\infty} \frac{r^{2 \nu}}{(2 \nu+1)!}\left[\Delta^{\nu} F(\mathbf{x})\right]_{\mathbf{x}=0} . \tag{11}
\end{equation*}
$$

3. Homogeneous and harmonic polynomials

The angular integration formula shown above can be derived from the properties of homogeneous polynomials and harmonic polynomials. An homogeneous polynomial of order n is a polynomial of the form

$$
\begin{equation*}
f_{n}(\mathbf{x})=A \prod_{j=0}^{d} x_{j}^{n_{j}}+B \prod_{j=0}^{d} x_{j}^{n_{j}^{\prime}}+\cdots \tag{12}
\end{equation*}
$$

where A, B, \ldots are constants and

$$
\begin{equation*}
\sum_{j=0}^{d} n_{j}=n, \quad \sum_{j=0}^{d} n_{j}^{\prime}=n, \quad \text { etc. } \tag{13}
\end{equation*}
$$

An harmonic polynomial, $h_{n}(\mathbf{x})$, is an homogeneous polynomial which, in addition to being homogeneous, also satisfies the generalized Laplace equation

$$
\begin{equation*}
\Delta h_{n}(\mathbf{x})=0 . \tag{14}
\end{equation*}
$$

Any homogeneous polynomial of order n obeys the relationship $[3,4,10]$

$$
\begin{equation*}
\left[\sum_{j=0}^{d} x_{j} \frac{\partial}{\partial x_{j}}-n\right] f_{n}(\mathbf{x})=0, \tag{15}
\end{equation*}
$$

from which it follows that, for harmonic polynomials,

$$
\begin{equation*}
\Delta\left[r^{m} h_{n}(\mathbf{x})\right]=m(m+d+2 n-2) r^{m-2} h_{n}(\mathbf{x}) \tag{16}
\end{equation*}
$$

Any homogeneous polynomial, $f_{n}(\mathbf{x})$, can be decomposed into a series of harmonic polynomials multiplied by appropriate powers of the hyperradius [10]:

$$
\begin{equation*}
f_{n}(\mathbf{x})=h_{n}(\mathbf{x})+r^{2} h_{n-2}(\mathbf{x})+r^{4} h_{n-4}(\mathbf{x})+\cdots . \tag{17}
\end{equation*}
$$

For even n, the final term in this decomposition is $r^{n} h_{0}$, where h_{0} is a constant. If we apply the generalized Laplacian operator $n / 2$ times to both sides of equation (17), making use of (16) we obtain, for even n,

$$
\begin{equation*}
\Delta^{n / 2} f_{n}(\mathbf{x})=\frac{n!!(d+n-2)!!}{(d-2)!!} h_{0} . \tag{18}
\end{equation*}
$$

Thus the constant h_{0} which occurs in (17) when n is even is given by

$$
\begin{equation*}
h_{0}=\frac{(d-2)!!}{n!!(d+n-2)!!} \Delta^{n / 2} f_{n}(\mathbf{x}) . \tag{19}
\end{equation*}
$$

4. Grand angular momentum

The generalized Laplacian operator can be written in the form [3,4]

$$
\begin{equation*}
\Delta=\frac{1}{r^{d-1}} \frac{\partial}{\partial r} r^{d-1} \frac{\partial}{\partial r}-\frac{\Lambda^{2}}{r^{2}}, \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda^{2}=-\sum_{i>j}^{d}\left(x_{i} \frac{\partial}{\partial x_{j}}-x_{j} \frac{\partial}{\partial x_{i}}\right)^{2} \tag{21}
\end{equation*}
$$

is the generalized or grand angular momentum operator. From (14) and (20) we have, for any harmonic polynomial,

$$
\begin{equation*}
\left(\frac{1}{r^{d-1}} \frac{\partial}{\partial r} r^{d-1} \frac{\partial}{\partial r}-\frac{\Lambda^{2}}{r^{2}}\right) h_{n}(\mathbf{x}) \tag{22}
\end{equation*}
$$

If we let

$$
\begin{equation*}
Y_{n}(\Omega) \equiv r^{-n} h_{n}(\mathbf{x}), \tag{23}
\end{equation*}
$$

then (22) yields

$$
\begin{equation*}
\left[n(n+d-2)-\Lambda^{2}\right] r^{n} Y_{n}(\Omega)=0, \tag{24}
\end{equation*}
$$

because $Y_{n}(\Omega)$ is a pure function of the hyperangles and is independent of r. We can rewrite (24) in the form

$$
\begin{equation*}
\Lambda^{2} h_{n}(\mathbf{x})=n(n+d-2) h_{n}(\mathbf{x}) \tag{25}
\end{equation*}
$$

In other words, every harmonic polynomial of order n is an eigenfunction of the grand angular momentum operator Λ^{2}. The decomposition of an homogeneous polynomial into harmonic polynomials multiplied by powers of the hyperradius (equation (17)) can thus be interpreted as a decomposition of the homogeneous polynomial into eigenfunctions of Λ^{2}. Since eigenfunctions of Λ^{2} corresponding to different eigenvalues are orthogonal when integrated over the generalized solid angle [3], we have

$$
\begin{equation*}
\int \mathrm{d} \Omega h_{n^{\prime}}(\mathbf{x}) h_{n}(\mathbf{x})=0 \quad \text { if } n^{\prime} \neq n \tag{26}
\end{equation*}
$$

If we let $n^{\prime}=0$ and if we remember that h_{0} is a constant, (26) implies that

$$
\begin{equation*}
\int \mathrm{d} \Omega h_{n}(\mathbf{x})=0 \quad \text { if } n \neq 0 \tag{27}
\end{equation*}
$$

Making use of (17) and (27) for the case of even n, we obtain

$$
\begin{equation*}
\int \mathrm{d} \Omega f_{n}(\mathbf{x})=\int \mathrm{d} \Omega\left[h_{n}(\mathbf{x})+r^{2} h_{n-2}(\mathbf{x})+\cdots+r^{n} h_{0}\right]=r^{n} h_{0} \frac{2 \pi^{d / 2}}{\Gamma(d / 2)} . \tag{28}
\end{equation*}
$$

With the help of (19), we can rewrite (28) in the form

$$
\begin{equation*}
\int \mathrm{d} \Omega f_{n}(\mathbf{x})=\frac{(d-2)!!2 \pi^{d / 2} r^{n}}{\Gamma(d / 2) n!!(n+d-2)!!} \Delta^{n / 2} f_{n}(\mathbf{x}) \tag{29}
\end{equation*}
$$

We have assumed that it is possible to expand $F(\mathbf{x})$ about the origin in terms of a polynomial in the coordinates $x_{1}, x_{2}, \ldots, x_{d}$, and thus we can write

$$
\begin{equation*}
F(\mathbf{x})=\sum_{n=0}^{\infty} f_{n}(\mathbf{x}), \tag{30}
\end{equation*}
$$

where the functions $f_{n}(\mathbf{x})$ are homogeneous polynomials. Combining (30) and (29), we obtain

$$
\begin{equation*}
\int \mathrm{d} \Omega F(\mathbf{x})=\frac{(d-2)!!2 \pi^{d / 2}}{\Gamma(d / 2)} \sum_{n=0,2, \ldots .}^{\infty} \frac{r^{n}}{n!!(n+d-2)!!} \Delta^{n / 2} f_{n}(\mathbf{x}), \tag{31}
\end{equation*}
$$

where the odd terms have been omitted because, as a consequence of (17) and (27), they cannot contribute to the angular integral. From (30) it follows that

$$
\begin{equation*}
\left[\Delta^{n / 2} F(\mathbf{x})\right]_{\mathbf{x}=0}=\Delta^{n / 2} f_{n}(\mathbf{x}), \tag{32}
\end{equation*}
$$

since the operation of setting $\mathbf{x}=0$ eliminates all parts of a polynomial in $x_{1}, x_{2}, \ldots, x_{d}$ except the constant term. Finally, if we let $n=2 \nu$, making use of (32), we can see that (31) will take on the form shown in equation (10).

5. Some illustrative examples

To illustrate the angular integration formula discussed above, we can consider the case where $F(\mathbf{x})$ is a d-dimensional plane wave

$$
\begin{equation*}
F(\mathbf{x})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}=\mathrm{e}^{\mathrm{i}\left(k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{d} x_{d}\right)} . \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left[\Delta^{\nu} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right]_{\mathbf{x}=0}=(-1)^{\nu} k^{2 \nu}, \tag{34}
\end{equation*}
$$

so that (10) yields

$$
\begin{equation*}
\int \mathrm{d} \Omega \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}=\frac{(d-2)!!2 \pi^{d / 2}}{\Gamma(d / 2)} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}(k r)^{2 \nu}}{(2 \nu)!!(d+2 \nu-2)!!} . \tag{35}
\end{equation*}
$$

When $d=3$, this reduces to

$$
\begin{equation*}
\int \mathrm{d} \Omega \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}=4 \pi \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}(k r)^{2 \nu}}{(2 \nu+1)!}=4 \pi j_{0}(k r), \tag{36}
\end{equation*}
$$

where $j_{0}(k r)$ is a spherical Bessel function of order zero.
As a second example, let us consider the angular integral of a product of three spherical harmonics in a 3-dimensional space, i.e., the case where

$$
\begin{equation*}
F(\mathbf{x})=Y_{l, m}^{*}(\theta, \phi) Y_{l^{\prime}, m^{\prime}}(\theta, \phi) Y_{l^{\prime \prime}, m^{\prime \prime}}(\theta, \phi) . \tag{37}
\end{equation*}
$$

Since equations (10) and (11) are really designed for the angular integration of polynomials, we begin the calculation by converting the spherical harmonics into harmonic polynomials in Cartesian coordinates x_{1}, x_{2} and x_{3} :

$$
\begin{equation*}
Y_{l, m}(\theta, \phi) \equiv r^{-l} h_{l, m}(\mathbf{x}) . \tag{38}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int \mathrm{d} \Omega Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}} Y_{l^{\prime \prime}, m^{\prime \prime}}=\frac{1}{r^{n}} \int \mathrm{~d} \Omega f_{n}(\mathbf{x}), \tag{39}
\end{equation*}
$$

where $n=l+l^{\prime}+l^{\prime \prime}$ and

$$
\begin{equation*}
f_{n}(\mathbf{x}) \equiv h_{l, m}^{*}(\mathbf{x}) h_{l^{\prime}, m^{\prime}}(\mathbf{x}) h_{l^{\prime \prime}, m^{\prime \prime}}(\mathbf{x}) . \tag{40}
\end{equation*}
$$

Since $f_{n}(\mathbf{x})$ is an homogeneous polynomial of order n, the integral vanishes if $n=$ $l+l^{\prime}+l^{\prime \prime}$ is odd (as a consequence of equations (17) and (27)). When n is even, the integral is given by a single term in the series shown in equation (11), the term where $\nu=n / 2$. Thus we have

$$
\begin{align*}
& \int \mathrm{d} \Omega Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}} Y_{l^{\prime \prime}, m^{\prime \prime}} \\
& \quad=\frac{4 \pi}{\left(l+l^{\prime}+l^{\prime \prime}+1\right)!} \Delta^{\left(l+l^{\prime}+l^{\prime \prime}\right) / 2} h_{l, m}^{*}(\mathbf{x}) h_{l^{\prime}, m^{\prime}}(\mathbf{x}) h_{l^{\prime \prime}, m^{\prime \prime}}(\mathbf{x}), \tag{41}
\end{align*}
$$

where the harmonic polynomials $h_{l, m}(\mathbf{x})$ are defined by (38). It is unnecessary to set $\mathbf{x}=0$ in this case, since $\Delta^{n / 2} f_{n}(\mathbf{x})$ is a constant. Integrals involving hyperspherical harmonics (such as the integrals needed in the Shibuya-Wulfman method $[10,12]$, or in molecular dynamics [1,2], or in dimensional scaling [7,8]) can, of course, be calculated with equal ease from equation (10) using systems such as Mathematica or Maple, within which differentiation of polynomials is an easily-performed operation.

References

[1] V. Aquilanti, S. Cavalli and G. Grossi, J. Chem. Phys. 85 (1986) 1362.
[2] V. Aquilanti, G. Grossi and A. Lagana, J. Chem. Phys. 76 (1982) 1587.
[3] J. Avery, Hyperspherical Harmonics, Applications in Quantum Theory (Kluwer, Dordrecht, 1989) chapters 1 and 2.
[4] J. Avery, in: Conceptual Trends in Quantum Chemistry, eds. E.S. Kryachko and J.L. Calais (Kluwer, Dordrecht, 1994) pp. 135-169.
[5] J. Avery and F. Antonsen, Theor. Chim. Acta 85 (1993) 33.
[6] J. Avery and P.J. Ørmen, Int. J. Quantum Chem. 18 (1980) 953.
[7] D.R. Herschbach, J. Chem. Phys. 84 (1986) 838.
[8] D.R. Herschbach, J. Avery and O. Goscinski, eds., Dimensional Scaling in Chemical Physics (Kluwer, Dordrecht, 1993).
[9] M.A.J. Michels, Int. J. Quantum Chem. 20 (1981) 951.
[10] T. Shibuya and C.E. Wulfman, Proc. Roy. Soc. London Ser. A 286 (1965) 376.
[11] N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22 (Amer. Math. Soc., Providence, RI, 1968).
[12] C.E. Wulfman, in: Group Theory and Its Applications, ed. E.M. Loebel (Academic Press, New York, 1971).

[^0]: © J.C. Baltzer AG, Science Publishers

