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A formula for angular and hyperangular integration
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A formula is derived which allows angular or hyperangular integration to be performed
on any function of the coordinates of a d-dimensional space, provided that it is possible to
expand the function as a polynomial in the coordinates x1,x2, . . . ,xd. The expansion need
not be carried out for the formula to be applied.

1. Introduction

Since quantum chemists and physicists frequently need to perform angular inte-
grations when calculating matrix elements, formulae for evaluating angular integrals
have very general interest and utility. A number of such formulae have been dis-
cussed by the author and coworkers in previous publications [3–6,9]. In the present
note, a new angular integration formula is derived, which is more general than those
previously discussed.

2. Hyperangular integration in d-dimensional spaces

Let

x = {x1,x2,x3, . . . ,xd} (1)

be the Cartesian coordinates of a d-dimensional space, and let

r =
(
x2

1 + x2
2 + · · · + x2

d

)1/2
(2)

be the hyperradius in this space, while

∆ =
d∑
j=1

∂2

∂x2
j

(3)

is the generalized Laplacian operator. The volume element in the space can be ex-
pressed in the form [3,4]

dx1 dx2 . . . dxd = rd−1 dr dΩ, (4)
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where dΩ is the generalized solid angle element. The total solid angle in such a space
can be found by noticing that∫ ∞

0
dr rd−1 e−r

2
∫

dΩ =
d∏
j=1

∫ ∞
−∞

dxj e−x
2
j = πd/2 (5)

and ∫ ∞
0

dr rd−1 e−r
2

=
1
2

Γ
(
d

2

)
, (6)

and, therefore, ∫
dΩ =

2πd/2

Γ(d/2)
. (7)

For example, when d = 3, this reduces to∫
dΩ =

2π3/2

Γ(3/2)
= 4π, (8)

while when d = 4, we have ∫
dΩ =

2π4/2

Γ(4/2)
= 2π2. (9)

The angular integration formula which will be derived in this paper states that, if F (x)
is any function which can be expanded about the origin in terms of a polynomial in
x1,x2,x3, . . . ,xd, then∫

dΩF (x) =
(d− 2)!!2πd/2

Γ(d/2)

∞∑
ν=0

r2ν

(2ν)!!(d + 2ν − 2)!!

[
∆νF (x)

]
x=0. (10)

When d = 3, this formula reduces to∫
dΩF (x) = 4π

∞∑
ν=0

r2ν

(2ν + 1)!

[
∆νF (x)

]
x=0. (11)

3. Homogeneous and harmonic polynomials

The angular integration formula shown above can be derived from the properties
of homogeneous polynomials and harmonic polynomials. An homogeneous polynomial
of order n is a polynomial of the form

fn(x) = A
d∏
j=0

x
nj
j +B

d∏
j=0

x
n′j
j + · · · , (12)
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where A,B, . . . are constants and

d∑
j=0

nj = n,
d∑
j=0

n′j = n, etc. (13)

An harmonic polynomial, hn(x), is an homogeneous polynomial which, in addition to
being homogeneous, also satisfies the generalized Laplace equation

∆hn(x) = 0. (14)

Any homogeneous polynomial of order n obeys the relationship [3,4,10][
d∑
j=0

xj
∂

∂xj
− n

]
fn(x) = 0, (15)

from which it follows that, for harmonic polynomials,

∆
[
rmhn(x)

]
= m(m+ d+ 2n− 2)rm−2hn(x). (16)

Any homogeneous polynomial, fn(x), can be decomposed into a series of harmonic
polynomials multiplied by appropriate powers of the hyperradius [10]:

fn(x) = hn(x) + r2hn−2(x) + r4hn−4(x) + · · · . (17)

For even n, the final term in this decomposition is rnh0, where h0 is a constant. If
we apply the generalized Laplacian operator n/2 times to both sides of equation (17),
making use of (16) we obtain, for even n,

∆n/2fn(x) =
n!!(d+ n− 2)!!

(d− 2)!!
h0. (18)

Thus the constant h0 which occurs in (17) when n is even is given by

h0 =
(d− 2)!!

n!!(d+ n− 2)!!
∆n/2fn(x). (19)

4. Grand angular momentum

The generalized Laplacian operator can be written in the form [3,4]

∆ =
1

rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2 , (20)

where

Λ2 = −
d∑
i>j

(
xi

∂

∂xj
− xj

∂

∂xi

)2

(21)
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is the generalized or grand angular momentum operator. From (14) and (20) we have,
for any harmonic polynomial,(

1
rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2

)
hn(x). (22)

If we let

Yn(Ω) ≡ r−nhn(x), (23)

then (22) yields [
n(n+ d− 2)− Λ2]rnYn(Ω) = 0, (24)

because Yn(Ω) is a pure function of the hyperangles and is independent of r. We can
rewrite (24) in the form

Λ2hn(x) = n(n+ d− 2)hn(x). (25)

In other words, every harmonic polynomial of order n is an eigenfunction of the grand
angular momentum operator Λ2. The decomposition of an homogeneous polynomial
into harmonic polynomials multiplied by powers of the hyperradius (equation (17))
can thus be interpreted as a decomposition of the homogeneous polynomial into eigen-
functions of Λ2. Since eigenfunctions of Λ2 corresponding to different eigenvalues are
orthogonal when integrated over the generalized solid angle [3], we have∫

dΩhn′(x)hn(x) = 0 if n′ 6= n. (26)

If we let n′ = 0 and if we remember that h0 is a constant, (26) implies that∫
dΩhn(x) = 0 if n 6= 0. (27)

Making use of (17) and (27) for the case of even n, we obtain∫
dΩ fn(x) =

∫
dΩ
[
hn(x) + r2hn−2(x) + · · ·+ rnh0

]
= rnh0

2πd/2

Γ(d/2)
. (28)

With the help of (19), we can rewrite (28) in the form∫
dΩ fn(x) =

(d− 2)!!2πd/2rn

Γ(d/2)n!!(n + d− 2)!!
∆n/2fn(x). (29)

We have assumed that it is possible to expand F (x) about the origin in terms of a
polynomial in the coordinates x1,x2, . . . ,xd, and thus we can write

F (x) =
∞∑
n=0

fn(x), (30)
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where the functions fn(x) are homogeneous polynomials. Combining (30) and (29),
we obtain ∫

dΩF (x) =
(d− 2)!!2πd/2

Γ(d/2)

∞∑
n=0,2,...

rn

n!!(n+ d− 2)!!
∆n/2fn(x), (31)

where the odd terms have been omitted because, as a consequence of (17) and (27),
they cannot contribute to the angular integral. From (30) it follows that[

∆n/2F (x)
]

x=0 = ∆n/2fn(x), (32)

since the operation of setting x = 0 eliminates all parts of a polynomial in x1,x2, . . . ,xd
except the constant term. Finally, if we let n = 2ν, making use of (32), we can see
that (31) will take on the form shown in equation (10).

5. Some illustrative examples

To illustrate the angular integration formula discussed above, we can consider
the case where F (x) is a d-dimensional plane wave

F (x) = eik·x = ei(k1x1+k2x2+···+kdxd). (33)

Then [
∆νeik·x]

x=0 = (−1)νk2ν , (34)

so that (10) yields∫
dΩ eik·x =

(d− 2)!!2πd/2

Γ(d/2)

∞∑
ν=0

(−1)ν(kr)2ν

(2ν)!!(d + 2ν − 2)!!
. (35)

When d = 3, this reduces to∫
dΩ eik·x = 4π

∞∑
ν=0

(−1)ν(kr)2ν

(2ν + 1)!
= 4πj0(kr), (36)

where j0(kr) is a spherical Bessel function of order zero.
As a second example, let us consider the angular integral of a product of three

spherical harmonics in a 3-dimensional space, i.e., the case where

F (x) = Y ∗l,m(θ,φ)Yl′,m′(θ,φ)Yl′′,m′′(θ,φ). (37)

Since equations (10) and (11) are really designed for the angular integration of poly-
nomials, we begin the calculation by converting the spherical harmonics into harmonic
polynomials in Cartesian coordinates x1, x2 and x3:

Yl,m(θ,φ) ≡ r−lhl,m(x). (38)
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Then ∫
dΩY ∗l,mYl′,m′Yl′′,m′′ =

1
rn

∫
dΩ fn(x), (39)

where n = l + l′ + l′′ and

fn(x) ≡ h∗l,m(x)hl′,m′(x)hl′′ ,m′′(x). (40)

Since fn(x) is an homogeneous polynomial of order n, the integral vanishes if n =
l+ l′ + l′′ is odd (as a consequence of equations (17) and (27)). When n is even, the
integral is given by a single term in the series shown in equation (11), the term where
ν = n/2. Thus we have∫

dΩY ∗l,mYl′,m′Yl′′,m′′

=
4π

(l + l′ + l′′ + 1)!
∆(l+l′+l′′)/2h∗l,m(x)hl′ ,m′(x)hl′′ ,m′′(x), (41)

where the harmonic polynomials hl,m(x) are defined by (38). It is unnecessary to set
x = 0 in this case, since ∆n/2fn(x) is a constant. Integrals involving hyperspherical
harmonics (such as the integrals needed in the Shibuya–Wulfman method [10,12],
or in molecular dynamics [1,2], or in dimensional scaling [7,8]) can, of course, be
calculated with equal ease from equation (10) using systems such as Mathematica or
Maple, within which differentiation of polynomials is an easily-performed operation.
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